Implementation of higher-order absorbing boundary conditions for the Einstein equations
نویسندگان
چکیده
We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant ReggeWheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers l = 2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition BL of order L = l yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions BL with L < l, which include the widely used freezing-Ψ0 boundary condition that imposes the vanishing of the Newman-Penrose scalar Ψ0. PACS numbers: 04.25.D-, 02.60.Lj, 04.25.-g
منابع مشابه
Implementation of Absorbing Boundary Conditions for the Einstein Equations
Based on a recent study of the linearized Bianchi equations by Buchman and Sarbach, we construct and implement a hierarchy of absorbing boundary conditions for the Einstein equations in generalized harmonic gauge. As a test problem, we demonstrate that we can evolve multipolar gravitational waves without any spurious reflections at linear order in perturbation theory.
متن کاملExact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملAbsorbing boundary conditions for nonlinear Schrödinger equations.
A local time-splitting method (LTSM) is developed to design absorbing boundary conditions for numerical solutions of time-dependent nonlinear Schrödinger equations associated with open boundaries. These boundary conditions are significant for numerical simulations of propagations of nonlinear waves in physical applications, such as nonlinear fiber optics and Bose-Einstein condensations. Numeric...
متن کاملA Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...
متن کاملFree Vibration of a Thick Sandwich Plate Using Higher Order Shear Deformation Theory and DQM for Different Boundary Conditions
In this paper, the effect of different boundary conditions on the free vibration analysis response of a sandwich plate is presented using the higher order shear deformation theory. The face sheets are orthotropic laminated composites that follow the first order shear deformation theory (FSDT) based on the Rissners-Mindlin (RM) kinematics field. The motion equations are derived considering the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009